Unit C - Practical 4

Relationship between a mass suspended by a spring and the period of oscillation of the spring-mass system

Safety

Wear safety glasses/ goggles.

Apparatus and materials

- stand and two clamps
- steel spring (of known spring constant)
- ruler
- plumb line
- mass hanger $(100 \mathrm{~g})$ and slot masses $(100 \mathrm{~g})$
- fiducial mark (long pin)
- adhesive putty
- stopwatch

Introduction

In this practical, you will use measurements of the period of oscillation of a spring to determine its spring constant.

The period T of the oscillations of a small point mass m suspended from an ideal spring of spring constant k is given by:

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

The equation above can be written as:

$$
T^{2}=\frac{4 \pi^{2}}{k} m
$$

so that the gradient of a $T^{2} v s m$ graph is equal to $\frac{4 \pi^{2}}{k}$

Procedure

1 Attach one end of the spring to the clamp and stand securely.
2 Use a small piece of adhesive putty to attach the fiducial mark at the end of the spring.

3 Place the ruler next to the spring. Use the plumb line to check that both spring and ruler are vertical. Place a mass hanger at the other end of the spring and mark on the ruler the equilibrium position.

4 Displace the mass from its equilibrium position by a certain distance. This distance will be the amplitude of the oscillations and should remain constant throughout the experiment.

5 Release the mass and measure the time for the system to complete 20 full oscillations. (Note: the time it takes the end of the spring to go from the equilibrium position to the next equilibrium position is half a period. One full period is the time it takes to return to the

equilibrium position from the same side.)
6 Repeat four more times for this mass.
7 Record your measurements in an appropriate table.

Raw data table

mass $m / k g$ $\pm \ldots$.	Time for 20 full oscillations $\mathrm{s} \pm \ldots$				
	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$

8 Repeat the process (steps 3-7), each time adding a slot mass of 100 g .
9 For each mass calculate:
a the average time for 20 oscillations and the uncertainty of repeated measurements
b the period of one oscillation and the relevant uncertainty
c the square of the period and the relevant uncertainty.
Record these calculations in a separate table.

Processed data table

Mass, m / kg $\pm \ldots$.	Average time for 20 oscillations $/ \mathrm{s}$	Uncertainty from repeated measurements of t / s	Period, T / s	Uncertainty of T / s^{2}	T^{2} / s^{2}	Uncertainty of T^{2} / s^{2}

10 Plot a graph of the square of the period T^{2} against mass m. Use the values of uncertainty of T^{2} to draw error bars.

11 Draw a best-fit line for your points and calculate its gradient.
12 From the value of the gradient, calculate the experimental value of $k\left(=\frac{4 \pi^{2}}{\text { gradient }}\right)$.
13 Determine the gradient uncertainty and use it to calculate the uncertainty of the experimental value of k. Compare the known value of k with the experimentally determined one.

Questions

1 Is there another way of plotting your data in a linear graph? How would you re-arrange the equation $T=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$ to allow you to do this?

2 In this case, how would you determine the value of k from the gradient of your graph?

